Investigation of the Strain–Stress Field in Nanoscale Multilayer Systems by the Phase Plane Method

Author:

Belous Dmitrii1ORCID,Badalyan Anna1ORCID,Khomenko Alexei1ORCID,Goncharov Alexander12

Affiliation:

1. Department of Applied Mathematics and Complex Systems Modeling, Sumy State University, 40007 Sumy, Ukraine

2. Institute of Materials Science, Slovak University of Technology in Bratislava, Jána Bottu 25, 917 24 Trnava, Slovakia

Abstract

This paper presents the results of the study of stress relaxation fields, deformation, and temperature of the system of nanostructured multilayer coatings. In the work, a nonlinear relationship between strain and stress was used to take into account nonlinear effects in the mechanism of nanostructure formation. The paper assumes that a friction surface is provided by the self-organization of shear components: both stress and strain on the one hand, and temperature on the other. The studied objects are described in the adiabatic approximation, taking into account the fact of the evolution of stresses and strains. With the help of phase portraits of the system, the dependence of the deformation processes on the stresses arising in the system without coating and with coating is shown. It is shown that the rate of change of deformation depends on the characteristics of the mechanical impact on the coating and on the amount of stress and deformation. A conclusion is drawn regarding the transition process in the presence of two regions (Hooke and plastic deformation) in the corresponding phase portrait of the strain–stress field of the system. The results of the work can be used to determine the effective parameters of a coating in the analysis of experimental time dependences of stresses.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3