Multisource High-Resolution Remote Sensing Image Vegetation Extraction with Comprehensive Multifeature Perception

Author:

Li Yan1,Min Songhan2,Song Binbin1,Yang Hui3,Wang Biao1ORCID,Wu Yongchuang4

Affiliation:

1. School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China

2. Stony Brook Institute at Anhui University, Hefei 230601, China

3. Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China

4. School of Artificial Intelligence, Anhui University, Hefei 230601, China

Abstract

High-resolution remote sensing image-based vegetation monitoring is a hot topic in remote sensing technology and applications. However, when facing large-scale monitoring across different sensors in broad areas, the current methods suffer from fragmentation and weak generalization capabilities. To address this issue, this paper proposes a multisource high-resolution remote sensing image-based vegetation extraction method that considers the comprehensive perception of multiple features. First, this method utilizes a random forest model to perform feature selection for the vegetation index, selecting an index that enhances the otherness between vegetation and other land features. Based on this, a multifeature synthesis perception convolutional network (MSCIN) is constructed, which enhances the extraction of multiscale feature information, global information interaction, and feature cross-fusion. The MSCIN network simultaneously constructs dual-branch parallel networks for spectral features and vegetation index features, strengthening multiscale feature extraction while reducing the loss of detailed features by simplifying the dense connection module. Furthermore, to facilitate global information interaction between the original spectral information and vegetation index features, a dual-path multihead cross-attention fusion module is designed. This module enhances the differentiation of vegetation from other land features and improves the network’s generalization performance, enabling vegetation extraction from multisource high-resolution remote sensing data. To validate the effectiveness of this method, we randomly selected six test areas within Anhui Province and compared the results with three different data sources and other typical methods (NDVI, RFC, OCBDL, and HRNet). The results demonstrate that the MSCIN method proposed in this paper, under the premise of using only GF2 satellite images as samples, exhibits robust accuracy in extraction results across different sensors. It overcomes the rapid degradation of accuracy observed in other methods with various sensors and addresses issues such as internal fragmentation, false positives, and false negatives caused by sample generalization and image diversity.

Funder

Natural Science Foundation of China

International Science and Technology Cooperation Special

Anhui Provincial Natural Science Foundation

Hefei Municipal Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3