Satellite and sUAS Multispectral Remote Sensing Analysis of Vegetation Response to Beaver Mimicry Restoration on Blacktail Creek, Southwest Montana

Author:

Askam Ethan,Nagisetty Raja M.,Crowley Jeremy,Bobst Andrew L.,Shaw Glenn,Fortune Josephine

Abstract

Beaver dam analogs (BDAs) are being installed on streams where restoration goals include reconnecting the stream to its floodplain, increasing water storage in the stream corridor, and improving the extent and vigor of riparian vegetation. This study evaluated the effects on vegetation vigor of a BDA treatment on Blacktail Creek in southwest Montana, USA, using data from Sentinel-2 satellites and a small unmanned aerial system (sUAS; a.k.a. drone). The goal of this research was to determine if BDA installation increased the health of riparian vegetation. Sentinel-2 remote sensing data from 2016 to 2021 were used to compare the pre- and post-treatment periods, and to evaluate effects in the treated area relative to control areas. Enhanced Vegetation Index (EVI) values were calculated to quantify vegetation response from the addition of BDAs. These data suggest that installing BDAs at this site has not led to an apparent increase in late-summer vegetation vigor relative to the controls. One potential explanation for these results is that the vegetation was not water limited prior to treatment in this study reach. This is an important consideration for water resource managers prior to installation of BDAs if the main restoration goal is the improvement of riparian vegetation health. Two high spatial resolution sUAS multispectral datasets were collected to evaluate the bias introduced by using the relatively course resolution (10 m) satellite imagery to assess these changes. High-resolution sUAS data allow fine-scale differences in vegetation and inundated area to be distinguished; however, historical sUAS datasets are rarely available. Satellite-based remote sensing has much lower resolution; however, Sentinel-2 satellite data have been available for the entire earth since 2016. This study demonstrates that the combination of sUAS and satellite based remote sensing data provides a method to compare high-resolution datasets for spatial analysis while gaining insight into relatively low-resolution historical data for temporal analysis.

Funder

Montana Space Grant Consortium

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3