Remote Sensing Extraction Method of Illicium verum Based on Functional Characteristics of Vegetation Canopy

Author:

Zhang ZhuoyaoORCID,Liu Xiangnan,Zhu Lihong,Li Junji,Zhang Yue

Abstract

With the rapid development of remote sensing technology, researchers have attempted to improve the accuracy of tree species classifications from both data sources and methods. Although previous studies on tree species recognition have utilized the spectral and textural features of remote sensing images, they are unable to effectively extract tree species due to the problems of “same object with different spectrum” and “foreign object with the same spectrum”. Therefore, this study introduces vegetation functional datasets to further improve tree species classification. Using vegetation functional datasets, Sentinel-2 (S2) spectral datasets, and environmental datasets, combined with a Random Forest (RF) model, the classification of six types of land cover in Leye, Guangxi was completed and the planting distribution of Illicium verum in Leye County was extracted. Our results showed that the combination of vegetation functional datasets, S2 spectral datasets, and environmental datasets provided the highest overall accuracy (OA) (0.8671), Kappa coefficient (0.8382), and F1-Score (0.79). We believe that the vegetation functional datasets can enhance the accuracy of Illicium verum classification and provide new directions for tree species identification research. If vegetation functional datasets from more tree species are obtained in the future, we can extend them to the level of multiple tree species, and this approach may help to extract more information about forest species from remote sensing data in future studies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3