Candida tropicalis Systemic Infection Redirects Leukocyte Infiltration to the Kidneys Attenuating Encephalomyelitis

Author:

Munhoz-Alves NatáliaORCID,Mimura Luiza Ayumi Nishiyama,Viero Rosa Marlene,Bagagli EduardoORCID,Peron Jean Pierre Schatzmann,Sartori Alexandrina,Fraga-Silva Thais Fernanda de CamposORCID

Abstract

Environmental factors, including infections, are strongly associated with the pathogenesis of multiple sclerosis (MS), which is an autoimmune and demyelinating disease of the central nervous system (CNS). Although classically associated with bacterial and viral agents, fungal species have also been suspected to affect the course of the disease. Candida tropicalis is an opportunistic fungus that affects immunocompromised individuals and is also able to spread to vital organs. As C. tropicalis has been increasingly isolated from systemic infections, we aimed to evaluate the effect of this fungus on experimental autoimmune encephalomyelitis (EAE), a murine model to study MS. For this, EAE was induced in female C57BL/6 mice 3 days after infection with 106 viable C. tropicalis yeasts. The infection decreased EAE prevalence and severity, confirmed by the less inflammatory infiltrate and less demyelization in the lumbar spinal cord. Despite this, C. tropicalis infection associated with EAE results in the death of some animals and increased urea and creatinine serum levels. The kidneys of EAE-infected mice showed higher fungal load associated with increased leukocyte infiltration (CD45+ cells) and higher expression of T-box transcription factor (Tbx21) and forkhead box P3 (Foxp3). Altogether, our results demonstrate that although C. tropicalis infection reduces the prevalence and severity of EAE, partially due to the sequestration of leukocytes by the inflamed renal tissue, this effect is associated with a poor disease outcome.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3