Assessing Climate Change Impacts on River Flows in the Tonle Sap Lake Basin, Cambodia

Author:

Oeurng Chantha,Cochrane Thomas,Chung Sarit,Kondolf Mathias,Piman Thanapon,Arias Mauricio

Abstract

The Tonle Sap is the most fertile and diverse freshwater ecosystem in Southeast Asia, receiving nurturing water flows from the Mekong and its immediate basin. In addition to rapid development in the Tonle Sap basin, climate change may threaten natural flow patterns that sustain its diversity. The impacts of climate change on river flows in 11 sub-basins contributing to the Tonle Sap Lake were assessed using the Soil and Water Assessment Tool (SWAT) model to quantify the potential magnitude of future hydrological alterations. Projected river flows from three General Circulation Models (GFDL-CM3, GISS-E2-R-CC and IPSL-CM5A-MR) for three time horizons (2030s, 2060s and 2090s) indicate a likely decrease in both the wet and dry season flows. The mean annual projected flow reductions range from 9 to 29%, 10 to 35% and 7 to 41% for the 2030s, 2060s and 2090s projections, respectively. Moreover, a decrease in extreme river flows (Q5 and Q95) was also found, which implies there could be a decline in flood magnitudes and an increase in drought occurrences throughout the basin. The results of this study provide insight for water resources planning and adaptation strategies for the river ecosystems during the dry season, when water flows are projected to decrease.

Funder

Conservation International

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference43 articles.

1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2013

2. Assessment of climate change impact on the stream-flow in a typical debris flow watershed of Jianzhuangcuan catchment in Shaanxi Province, China

3. Hydrological Response to Climate Change in Beijiang River Basin Based on the SWAT Model

4. Climate Change and Water—IPCC Technical Paper VI;Bates,2008

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3