Quantifying the availability of seasonal surface water and identifying the drivers of change within tropical forests in Cambodia

Author:

Mamalis LouisaORCID,Arnold Kathryn E.,Mahood Simon P.,Khean Mao,Beale Colin M.

Abstract

Surface freshwater is a vital resource that is declining globally, predominantly due to climate and land use changes. Cambodia is no exception and the loss threatens many species, such as the giant ibis a Critically Endangered waterbird. We aimed to quantify the spatial and temporal (2000–2020) change of surface water availability across northern and eastern Cambodia and to assess the impact of this on the giant ibis. We used a Random Forest Classifier to determine the changes and we tested the impact of land use and geographical covariates using spatially explicit regression models. We found an overall reduction of surface water availability of 4.16%. This was predominantly driven by the presence of Economic Land Concessions and roads which increased the probability of extreme drying and flooding events. The presence of protected areas reduced these probabilities. We found changes in precipitation patterns over the wider landscape did not correlate with changes in surface water availability, supporting the overriding influence of land use change. 98% of giant ibis nests recorded during the time period were found within 25m of surface water during the dry season, highlighting their dependency on surface water. The overall surface water decline resulted in a 25% reduction in dry season suitable habitat for the giant ibis. Although absolute changes in surface water over the whole area were relatively small, the impact on the highest quality habitat for ibis is disproportionate and therefore threatens its populations. Defining the threats to such an endangered species is crucial for effective management.

Funder

Natural Environment Research Council

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3