An Analysis of Extreme Rainfall Events in Cambodia

Author:

Pen Sytharith123,Rad Saeed1ORCID,Ban Liheang2,Brang Sokhorng2,Nuth Panha2,Liao Lin1

Affiliation:

1. College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China

2. Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., Phnom Penh P.O. Box 86, Cambodia

3. Research and Innovation Center, Institute of Technology of Cambodia, Russian Federation Blvd., Phnom Penh P.O. Box 86, Cambodia

Abstract

Extreme rainfall, also known as heavy rainfall or intense precipitation, is a weather event characterized by a significant amount of rainfall within a short period. This study analyzes the trends in extreme precipitation indices at 17 stations in four main regions in Cambodia—the Tonle Sap, coastal, Mekong Delta, and Upper Mekong regions—between 1991 and 2021. Analyzing the data with RClimDex v1.9 reveals diverse spatial and temporal variations. The statistical analysis of the extreme rainfall indices in Cambodia from 1991 to 2021 reveals significant trends. In the Tonle Sap region, consecutive dry days (CDDs) increased at most stations, except Battabang, Kampong Thmar, and Pursat, while consecutive wet days (CWDs) increased at most stations. These trends align with rising temperatures and reduced forest cover. In the coastal region, particularly at the Krong Khemarak Phummin station, most rainfall indices increased, with a slope value of 89.94 mm/year. The extreme rainfall indices max. 1-day precipitation (RX1day) and max. 5-day precipitation (RX5day) also increased, suggesting higher precipitation on days exceeding the 95th (R95p) and 99th percentiles (R99p). The Kampot station showed a significant increase in CDDs, indicating a heightened drought risk. In the Mekong Delta, the Prey Veng station recorded a decrease in the CDDs slope value by −4.892 days/year, indicating potential drought risks. The Stung Treng station, which is the only station in Upper Mekong, showed a decreasing trend in CDDs with a slope value of −1.183 days/year, indicating a risk of extreme events. These findings underscore the complex interplay between climate change, land use, and rainfall patterns in Cambodia.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3