Graphene Synthesis Techniques and Environmental Applications

Author:

Abbas Qaisar,Shinde Pragati A.,Abdelkareem Mohammad AliORCID,Alami Abdul HaiORCID,Mirzaeian MojtabaORCID,Yadav Arti,Olabi Abdul Ghani

Abstract

Graphene is fundamentally a two-dimensional material with extraordinary optical, thermal, mechanical, and electrical characteristics. It has a versatile surface chemistry and large surface area. It is a carbon nanomaterial, which comprises sp2 hybridized carbon atoms placed in a hexagonal lattice with one-atom thickness, giving it a two-dimensional structure. A large number of synthesis techniques including epitaxial growth, liquid phase exfoliation, electrochemical exfoliation, mechanical exfoliation, and chemical vapor deposition are used for the synthesis of graphene. Graphene prepared using different techniques can have a number of benefits and deficiencies depending on its application. This study provides a summary of graphene preparation techniques and critically assesses the use of graphene, its derivates, and composites in environmental applications. These applications include the use of graphene as membrane material for the detoxication and purification of water, active material for gas sensing, heavy metal ions detection, and CO2 conversion. Furthermore, a trend analysis of both synthesis techniques and environmental applications of graphene has been performed by extracting and analyzing Scopus data from the past ten years. Finally, conclusions and outlook are provided to address the residual challenges related to the synthesis of the material and its use for environmental applications.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3