Affiliation:
1. Department of Mechanical Engineering Malnad College of Engineering, Hassan, affiliated to VTU Belagavi India
2. Department of Mechanical Enngineering KLS Gogte Institute of Technology, affiliated to VTU Belagavi India
Abstract
Abstract3D printing, also known as additive manufacturing, is an innovative technology that allows for the construction of complex, three‐dimensional structures layer by layer using digital plans. This technology has transformed industries including as aerospace, automotive, healthcare, and consumer items by allowing for rapid prototyping, customization, and the manufacture of complex geometries. Graphene, a single layer of carbon atoms organized in a hexagonal lattice, is well‐known for its superior electrical and thermal conductivity, as well as its great tensile strength. When graphene is mixed with composite materials, it greatly improves their mechanical and functional properties, resulting in composites with higher strength, conductivity, lower weight, and greater durability. The combination of 3D printing and graphene‐reinforced composites creates new opportunities for the production of high‐performance, application‐specific structures. This review identifies key advancements in the synthesis, processing, and application of these composites, while also addressing critical challenges such as material dispersion, scalability, and the impact of graphene on the 3D printing process itself. A significant conclusion of this review is the recognition that overcoming these challenges is not only feasible but essential for harnessing the full potential of 3D‐printed graphene‐reinforced composites across diverse industrial sectors. The unique contribution of this work lies in providing a comprehensive roadmap for future research, guiding efforts to bridge current gaps and drive innovation in this emerging field.