Hybrid NHPSO-JTVAC-SVM Model to Predict Production Lead Time

Author:

Zhu HaoyuORCID,Woo Jong Hun

Abstract

In the shipbuilding industry, each production process has a respective lead time; that is, the duration between start and finish times. Lead time is necessary for high-efficiency production planning and systematic production management. Therefore, lead time must be accurate. However, the traditional method of lead time management is not scientific because it only references past records. This paper proposes a new self-organizing hierarchical particle swarm algorithm (PSO) with jumping time-varying acceleration coefficients (NHPSO-JTVAC)-support vector machine (SVM) regression model to increase the accuracy of lead-time prediction by combining the advanced PSO and SVM models. Moreover, this paper compares the prediction results of each SVM-based model with those of other conventional machine-learning algorithms. The results demonstrate that the proposed NHPSO-JTVAC-SVM model can achieve further meaningful enhancements in terms of prediction accuracy. The prediction performance of the NHPSO-JTVAC-SVM model is also better than that of the other SVM-based models or other machine learning algorithms. Overall, the NHPSO–JTVAC-SVM model is feasible for predicting the lead time in shipbuilding.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Lead time management

2. Manufacturing lead time estimation using data mining

3. Lean production and quality commitment

4. Lead Time Estimation Using Artificial Intelligence;Brown,2020

5. Using Machine Learning Methods to Predict Order Lead Times;Sethi;Int. J. Sci. Basic Appl. Res.,2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3