Lead time prediction for sheeter machine production in a paper conversion industry

Author:

Talha Siddique,Dawood Idrees,Jamil Atif,Ansari Arsalan,Sami Abdul,Rauf Muhammad

Abstract

Lead time is a critical performance measure in any manufacturing setting Key Performance Indicator (KPI). The same is true in the paper conversion industry, which has a significant degree of product variability. Due to the great variety of their products, all industries must be able to foresee and plan ahead in order to meet client demand. With contemporary research concentrating on machine learning and simulation techniques, businesses must implement a manufacturing execution system (MES) to track data. However, without such a framework, applying machine learning and simulation approaches becomes difficult. This study introduces a novel method for forecasting lead time (special to sheeter machines used in the paper conversion sector) by combining the time required to process the reel (sheeting time) with the human (setup) elements. The method used to calculate the sheeting time takes product parameters into account, allowing for product-specific lead time forecast. As a result, a very successful 'product-specific' lead time prediction approach for small scale enterprises has been developed that enables production planning without relying on current and data-intensive prediction methods such as machine learning and simulation.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3