A Study of Positivity Analysis for Difference Operators in the Liouville–Caputo Setting

Author:

Srivastava Hari Mohan1234ORCID,Mohammed Pshtiwan Othman5ORCID,Guirao Juan Luis G.67ORCID,Baleanu Dumitru8910ORCID,Al-Sarairah Eman1112ORCID,Jan Rashid13ORCID

Affiliation:

1. Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada

2. Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, AZ1007 Baku, Azerbaijan

3. Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea

4. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan

5. Department of Mathematics, College of Education, University of Sulaimani, Sulaimani 46001, Iraq

6. Department of Applied Mathematics and Statistics, Technical University of Cartagena, Hospital de Marina, 30203 Cartagena, Spain

7. Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

8. Department of Mathematics, Cankaya University, Balgat, 06530 Ankara, Turkey

9. Institute of Space Sciences, R76900 Magurele-Bucharest, Romania

10. Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 11022801, Lebanon

11. Department of Mathematics, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates

12. Department of Mathematics, Al-Hussein Bin Talal University, P.O. Box 33011, Ma’an 71111, Jordan

13. Department of Mathematics, University of Swabi, Swabi 23561, Khyber Pakhtunkhwa, Pakistan

Abstract

The class of symmetric function interacts extensively with other types of functions. One of these is the class of positivity of functions, which is closely related to the theory of symmetry. Here, we propose a positive analysis technique to analyse a class of Liouville–Caputo difference equations of fractional-order with extremal conditions. Our monotonicity results use difference conditions ΔaLCμf(a+J0+1−μ)≥(1−μ)f(a+J0) and ΔaLCμf(a+J0+1−μ)≤(1−μ)f(a+J0) to derive the corresponding relative minimum and maximum, respectively. We find alternative conditions corresponding to the main conditions in the main monotonicity results, which are simpler and stronger than the existing ones. Two numerical examples are solved by achieving the main conditions to verify the obtained monotonicity results.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference35 articles.

1. A transform method in discrete fractional calculus;Atici;Int. J. Differ. Equ.,2007

2. Discrete fractional calculus with the nabla operator;Atici;Electron. J. Qual. Theory Differ. Equ.,2009

3. Initial value problems in discrete fractional calculus;Atici;Proc. Am. Math. Soc.,2009

4. Arbitrary order fractional difference operators with discrete exponential kernels and applications;Abdeljawad;Discret. Dyn. Nat. Soc.,2017

5. On the definitions of nabla fractional operators;Abdeljawad;Abstr. Appl. Anal.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3