Solution of the Generalized Burgers Equation Using Homotopy Perturbation Method with General Fractional Derivative

Author:

Alqahtani Awatif Muflih1

Affiliation:

1. Department of Mathematics, Shaqra University, Riyadh 11972, Saudi Arabia

Abstract

This research paper introduces the generalized Burgers equation, a mathematical model defined using the general fractional derivative, the most recent operator in fractional calculus. The general fractional derivative can be reduced into three well-known operators, providing a more tractable form of the equation. We apply the homotopy perturbation method (HPM), a powerful analytical technique, to obtain the solution of the generalized Burgers equation. The results are illustrated using a practical example, and we present an analysis of the three reduced operators. In addition, a graphical analysis is provided to visualize the behavior of the solution. This study sheds light on the application of the homotopy perturbation method and the general fractional derivative in solving the generalized Burgers equation, contributing to the field of nonlinear differential equations.

Funder

Awatif Muflih Alqahtani

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference43 articles.

1. Kilbas, A. (2005). Fractional Calculus of the Generalized Wright Function, Institute of Mathematics and Informatics Bulgarian Academy of Sciences. Fractional Calculus and Applied Analysis.

2. Miller, K.S., and Ross, B. (1993). An Introdution to the Fractional Calculus and Fractional Differential Equations, J. Willey & Sons.

3. Podlubny, I. (1999). Fractional Differential Equations, Academic Press.

4. Comprehending the model of omicron variant using fractional derivatives;Sharma;Appl. Math. Sci. Eng.,2023

5. Dubey, R.S., Goswami, P., Baskonus, H.M., and Gomati Tailor A., G. (2022). On the existence and uniqueness analysis of fractional blood glucose-insulin minimal model. Int. J. Model. Simul. Sci. Comput.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3