Asymmetrical Training Scheme of Binary-Memristor-Crossbar-Based Neural Networks for Energy-Efficient Edge-Computing Nanoscale Systems

Author:

Pham Khoa,Tran Son,Nguyen Tien,Min Kyeong-SikORCID

Abstract

For realizing neural networks with binary memristor crossbars, memristors should be programmed by high-resistance state (HRS) and low-resistance state (LRS), according to the training algorithms like backpropagation. Unfortunately, it takes a very long time and consumes a large amount of power in training the memristor crossbar, because the program-verify scheme of memristor-programming is based on the incremental programming pulses, where many programming and verifying pulses are repeated until the target conductance. Thus, this reduces the programming time and power is very essential for energy-efficient and fast training of memristor networks. In this paper, we compared four different programming schemes, which are F-F, C-F, F-C, and C-C, respectively. C-C means both HRS and LRS are coarse-programmed. C-F has the coarse-programmed HRS and fine LRS, respectively. F-C is vice versa of C-F. In F-F, both HRS and LRS are fine-programmed. Comparing the error-energy products among the four schemes, C-F shows the minimum error with the minimum energy consumption. The asymmetrical coarse HRS and fine LRS can reduce the time and energy during the crossbar training significantly, because only LRS is fine-programmed. Moreover, the asymmetrical C-F can maintain the network’s error as small as F-F, which is due to the coarse-programmed HRS that slightly degrades the error.

Funder

Samsung

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3