Tunable Memristic Characteristics Based on Graphene Oxide Charge-Trap Memory

Author:

Li LeiORCID

Abstract

Solution-processable nonvolatile memory devices, consisted of graphene oxide (GO) embedded into an insulating polymer polymethyl methacrylate (PMMA), were manufactured. By varying the GO content in PMMA nanocomposite films, the memristic conductance behavior of the Ni/PMMA:GO/Indium tin oxide (ITO) sandwiched structure can be tuned in a controllable manner. An investigation was made on the memristic performance mechanism regarding GO charge-trap memory; these blends were further characterized by transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier transform infrared spectra (FTIR), Raman spectra, thermogravimetric analysis, X-ray diffraction (XRD), ultraviolet-visible spectroscopy, and fluorescence spectra in particular. Dependent on the GO content, the resistive switching was originated from the charges trapped in GO, for which bipolar tunable memristic behaviors were observed. PMMA:GO composites possess an ideal capability for large area device applications with the benefits of superior electronic properties and easy chemical modification.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3