A Novel One-Transistor Dynamic Random-Access Memory (1T DRAM) Featuring Partially Inserted Wide-Bandgap Double Barriers for High-Temperature Applications

Author:

Kim Myeongsun,Ha Jongmin,Kwon Ikhyeon,Han Jae-Hee,Cho SeongjaeORCID,Cho Il

Abstract

These days, the demand on electronic systems operating at high temperature is increasing owing to bursting interest in applications adaptable to harsh environments on earth, as well as in the unpaved spaces in the universe. However, research on memory technologies suitable to high-temperature conditions have been seldom reported yet. In this work, a novel one-transistor dynamic random-access memory (1T DRAM) featuring the device channel with partially inserted wide-bandgap semiconductor material toward the high-temperature application is proposed and designed, and its device performances are investigated with an emphasis at 500 K. The possibilities of the program operation by impact ionization and the erase operation via drift conduction by a properly high drain voltage have been verified through a series of technology computer-aided design (TCAD) device simulations at 500 K. Analyses of the energy-band structures in the hold state reveals that the electrons stored in the channel can be effectively confined and retained by the surrounding thin wide-bandgap semiconductor barriers. Additionally, for more realistic and practical claims, transient characteristics of the proposed volatile memory device have been closely investigated quantifying the programming window and retention time. Although there is an inevitable degradation in state-1/state-0 current ratio compared with the case of room-temperature operation, the high-temperature operation capabilities of the proposed memory device at 500 K have been confirmed to fall into the regime permissible for practical use.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3