Antibacterial Activity and Characterization of Bacteria Isolated from Diverse Types of Greek Honey against Nosocomial and Foodborne Pathogens

Author:

Tsadila ChristinaORCID,Nikolaidis Marios,Dimitriou Tilemachos G.ORCID,Kafantaris IoannisORCID,Amoutzias Grigoris D.ORCID,Pournaras Spyros,Mossialos DimitrisORCID

Abstract

It has been suggested that microorganisms present in honey are a potential source of antimicrobial compounds. This study aimed to isolate and characterize bacteria from 46 Greek honey samples of diverse botanical and geographical origin and to determine whether these bacteria demonstrate antibacterial activity against five important nosocomial and foodborne pathogens. In total, 2014 bacterial isolates were obtained and screened for antibacterial activity. Overall, 16% of the isolates inhibited the growth of Staphylococcus aureus, 11.2% inhibited the growth of Pseudomonas aeruginosa and Acinetobacter baumannii, 10.2% inhibited the growth of Salmonella Typhimurium and 12.4% of the isolates affected the growth of Citrobacter freundii. In total, 316 isolates that inhibited the growth of more than two of the tested pathogens were grouped by restriction fragment length polymorphisms (RFLP) analysis of the 16S rRNA gene amplicon. Fifty of them were identified by 16S rRNA gene sequencing. The majority, 62% of the isolates, belonged to the genus Bacillus. Only 10% of the isolates were identified as Gram-negative bacteria. Furthermore, in several bacterial isolates, genes encoding polyketide synthases and nonribosomal peptide synthetases that catalyze the biosynthesis of secondary metabolites which might contribute to the exerted antimicrobial activity, were detected. This study demonstrates that honey microbiota exerts antimicrobial activity and is a putative source of secondary metabolites against important nosocomial and food pathogens that warrants further investigation.

Funder

General Secretariat for Research and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3