Author:
Go Sun-ho,Tugirumubano Alexandre,Kim Hong-gun
Abstract
With the increasing use of carbon fiber reinforced plastics in various fields, carbon fiber composites based on prepregs have attracted attention in industries and academia research. However, prepreg manufacturing processes are costly, and the strength of structures varies depending on the orientation and defects (pores and delamination). For the non-contact evaluation of internal defects, the lock-in infrared thermography was proposed to investigate the defects in the composites subjected to the compression after impact test (CAI). The drop-weight impact test was conducted to study the impact behavior of the composites according to fibers orientation for composite fabricated using unidirectional (UD) carbon fiber prepregs. Using CAI tests, the residual compressive strengths were determined, and the damage modes were detected using a thermal camera. The results of the drop weight impact tests showed that the specimen laminated at 0° suffered the largest damage because of susceptibility of the resin to impact. The specimens with 0°/90° and +45°/−45° fibers orientation exhibited more than 90% of the impact energy absorption and good impact resistance. Furthermore, the specimens that underwent the impact tests were subjected to compressive test simultaneously with the lock-in thermography defects detection. The results showed that internal delamination, fibers splitting, and broken fibers occurred. The temperature differences in the residual compression tests were not significant.
Funder
National Research Foundation
Subject
Polymers and Plastics,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献