Fabrication of Micro-Groove on the Surface of CFRP to Enhance the Connection Strength of Composite Part

Author:

Xu Bin,Wei Meng-Yang,Wu Xiao-Yu,Fu Lian-Yu,Luo Feng,Lei Jian-Guo

Abstract

Carbon fiber-reinforced plastic (CFRP) has the advantages of being light weight, high strength, and corrosion resistant. At present, it is widely used in the lightweight design of automobile parts. The manufacturing of lightweight parts inevitably involves the connection between CFRP and the polymer material. The connection strength between CFRP and the polymer material significantly affects the service life of the composite parts. Taking CFRP and polyamide 6 (PA6) injection-molded composite parts as an example, this paper proposed a technological method to enhance the connection strength between CFRP and PA6. The proposed method was to fabricate micro-groove structures on the CFRP surface by compression molding. These micro-groove structures effectively increased the injection-molding area of the composite parts, thus enhancing the connection strength between CFRP and PA6. This paper presented a detailed study on the compression-molding process of micro-grooves on the CFRP surface, and successfully obtained the appropriate parameters. Finally, PA6 was used for injection molding on the CFRP with micro-grooves at an injection pressure of 8 MPa, an injection temperature of 240 °C, a holding pressure of 5 MPa, and a holding time of 2.5 s. The experimental results show that the micro-groove array structures on the CFRP surface could effectively improve the tensile strength of the connection interface in the composite parts. Compared with the composite part without micro-grooves, the tensile strength of the composite part with micro-grooves was increased by 80.93%. The composite parts prepared in this paper are mainly used in automobile interiors and the research results of this paper meet the actual needs of the enterprise.

Funder

National Natural Science Foundation of China

the Science and Technology Planning Project of Shenzhen Municipality

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3