Multi‐scale elastic properties of 2.5D woven composites with void defects

Author:

Wang Wang1ORCID,Shan Zhongde1,Sun Zheng2,Guo Zitong2

Affiliation:

1. College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China

2. College of Mechanical and Electrical Engineering Nanjing University of Aeronautics and Astronautics Nanjing China

Abstract

Abstract2.5D woven composite material inevitably produces void defects in its production process, which will seriously reduce its mechanical properties and reduce its service life. In this paper, the effects of void defects on the mechanical properties of 2.5D woven composites were studied by multi‐scale analysis. An improved Halpin‐Tsai semi‐empirical model is proposed to calculate the elastic properties of yarns with porous defects and verified by finite element method. A microscale representative volume unit (RVE) for predicting the elastic constants of composites with pore defects is established. Theoretical analysis and finite element analysis were used to verify the micro scale, and finite element analysis and experiment were used to verify the micro scale. The effect of porosity on the elastic properties of micro‐scale RVE was studied in detail. The results show that the model is reasonable and accurate in predicting the mechanical properties of yarns and composites. In addition, the effect of porosity on the mechanical properties of 2.5D woven composites is significant.Highlights An improved Halpin‐Tsai semi‐empirical model is proposed, which makes the microscale theoretical analysis of 2.5D woven composites better consistent with the finite element analysis. The void position obstructs the stress transfer of the matrix, and the stress concentration phenomenon also occurs. The void content has an effect on the mechanical properties of composites at both micro and micro scales.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3