Axial and Radial Compression Behavior of Composite Rocket Launcher Developed by Robotized Filament Winding: Simulation and Experimental Validation

Author:

Mishra RajeshORCID,Behera Bijoy Kumar,Mukherjee Sayan,Petru MichalORCID,Muller MiroslavORCID

Abstract

The principal objective of the work is to compare among carbon-glass filament wound epoxy matrix hybrid composites with a different fiber ratio made by robotized winding processes and optimize the geometry suitable for the Rocket Propelled Grenade Launcher. ANSYS based finite element analysis was used to predict the axial as well as radial compression behavior. Experimental samples were developed by a robot-controlled filament winding process that was incorporated with continuous resin impregnation. The experimental samples were evaluated for the corresponding compressional properties. Filament wound tubular composite structures were developed by changing the sequence of stacking of hoop layers and helical layers, and also by changing the angle of wind of the helical layers while keeping the sequence constant. The samples were developed from carbon and glass filaments with different carbon proportions (0%, 25%, 50%, 75%, and 100%) and impregnated with epoxy resin. The compressional properties of the tubular composites that were prepared by filament winding were compared with the predicted axial and radial compressional properties from computational modelling using the finite element model. A very high correlation and relatively small prediction error was obtained.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3