Mechanical Performance of Knitted Hollow Composites from Recycled Cotton and Glass Fibers for Packaging Applications

Author:

Jamshaid Hafsa,Mishra RajeshORCID,Zeeshan Muhammad,Zahid BilalORCID,Basra Sikandar Abbas,Tichy MartinORCID,Muller MiroslavORCID

Abstract

This research deals with the development of knitted hollow composites from recycled cotton fibers (RCF) and glass fibers (GF). These knitted hollow composites can be used for packaging of heavy weight products and components in aircrafts, marine crafts, automobiles, civil infrastructure, etc. They can also be used in medical prosthesis or in sports equipment. Glass fiber-based hollow composites can be used as an alternative to steel or wooden construction materials for interior applications. Developed composite samples were subjected to hardness, compression, flexural, and impact testing. Recycled cotton fiber, which is a waste material from industrial processes, was chosen as an ecofriendly alternative to cardboard-based packaging material. The desired mechanical performance of knitted hollow composites was achieved by changing the tube diameter and/or thickness. Glass fiber-reinforced knitted hollow composites were compared with RC fiber composites. They exhibited substantially higher compression strength as compared to cotton fiber-reinforced composites based on the fiber tensile strength. However, RC fiber-reinforced hollow composites showed higher compression modulus as compared to glass fiber-based composites due to much lower deformation during compression loading. Compression strength of both RCF- and GF-reinforced hollow composites decreases with increasing tube diameter. The RCF-based hollow composites were further compared with double-layered cardboard packaging material of similar thickness. It was observed that cotton-fiber-reinforced composites show higher compression strength, as well as compression modulus, as compared to the cardboard material of similar thickness. No brittle failure was observed during the flexural test, and samples with smaller tube diameter exhibited higher stiffness. The flexural properties of glass fiber-reinforced composites were compared with RCF composites. It was observed that GF composites exhibit superior flexural properties as compared to the cotton fiber-based samples. Flexural strength of RC fiber-reinforced hollow composites was also compared to that of cardboard packaging material. The composites from recycled cotton fibers showed substantially higher flexural stiffness as compared to double-layered cardboard material. Impact energy absorption was measured for GF and RCF composites, as well as cardboard material. All GF-reinforced composites exhibited higher absorption of impact energy as compared to RCF-based samples. Significant increase in absorption of impact energy was achieved by the specimens with higher tube thickness in the case of both types of reinforcing fibers. By comparing the impact performance of cotton fiber-based composites with cardboard packaging material, it was observed that the RC fiber-based hollow composites absorb much higher impact energy as compared to the cardboard-based packaging material. The current paper summarizes a comparative analysis of mechanical performance in the case of glass fiber-reinforced hollow composites vis-à-vis recycled cotton fiber-reinforced hollow composites. The use of recycled fibers is a positive step in the direction of ecofriendly materials and waste utilization. Their performance is compared with commercial packaging material for a possible replacement and reducing burden on the environment.

Funder

Internal grant agency of the Faculty of Engineering, Czech University of Life Sciences Prague

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3