Abstract
The aim of this work is to develop hydrophobic coatings on leather materials by plasma polymerisation with a low-pressure plasma system using an organosilicon compound, such as hexamethyldisiloxane (HMDSO), as chemical precursor. The hydrophobic coatings obtained by this plasma process were evaluated with different experimental techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and standardised tests including colour measurements of the samples, surface coating thickness and water contact angle (WCA) measurements. The results obtained indicated that the monomer had polymerised correctly and completely on the leather surface creating an ultra-thin layer based on polysiloxane. The surface modification produced a water repellent effect on the leather that does not alter the visual appearance and haptic properties. Therefore, the application of the plasma deposition process showed promising results that makes it a more sustainable alternative to conventional functional coatings, thus helping to reduce the use of hazardous chemicals in the finishing process of footwear manufacturing.
Subject
Polymers and Plastics,General Chemistry
Reference60 articles.
1. Waterproof and Water Repellent Textiles and Clothing,2017
2. Fluorine-containing aqueous copolymer emulsion for waterproof leather;Luo;J. Soc. Leather Technol. Chem.,2008
3. Effect of the Morphology of Leather Surface on the Hydrophobic-Hydrophilic Properties
4. A facile spraying method for fabricating superhydrophobic leather coating
5. IPCC, 2014: Cambio Climático 2014: Informe de Síntesis. Contribución de los Grupos de Trabajo I, II y III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos Sobre el Cambio Climático,2014
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献