Increasing Functionality of Fish Leather by Chemical Surface Modifications

Author:

Zilberfarb Achiad1,Cohen Gali1,Amir Elizabeth1ORCID

Affiliation:

1. Department of Polymer Materials Engineering, Shenkar College of Engineering and Design, Anna Frank 12, Ramat Gan 5252626, Israel

Abstract

Fish skin is a by-product of the fishing industry, which has become a significant environmental pollutant in recent years. Therefore, there is an emerging interest in developing novel technologies to utilize fish skin as a versatile raw material for the clothing and biomedical industries. Most research on finishing procedures is conducted on cattle leather, and practically very limited information on fish leather finishing is found in the literature. We have developed three functional surface finishing treatments on chromium (CL)- and vegetable (VL)- tanned salmon leather. These treatments include hydrophobic, oil repellent, and electro-conductive ones. The hydroxyl functional groups present on the surface of the leather were covalently grafted with bi-functional aliphatic small molecule, 10-undecenoylchloride (UC), by esterification reaction forming hydrophobic coating. The surface hydrophobicity was further increased via covalent binding of perfluorodecanethiol (PFDT) to the double bond end-groups of the UC-modified leather via thiol-ene click chemistry conditions. The oleophobic coating was successfully developed using synthesized fluorinated silica nanoparticles (FSN) and polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP), showing oil repellency with a contact angle of about 100° for soybean oil and n-hexadecane. The electrically conductive coating was realized by the incorporation of conjugated polymer, polyaniline (PANI), via in situ polymerization method. The treated leather exhibited surface resistivity of about 5.2 (Log (Ω/square)), much lower than untreated leather with a resistivity of 11.4 (Log (Ω/square)).

Funder

Israeli Ministry of Economy Innovation Authority

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3