Passive Attenuation of Mechanical Vibrations with a Superelastic SMA Bending Springs: An Experimental Investigation

Author:

Senko RichardORCID,Almeida Vinícius S.,dos Reis Rômulo P. B.,Oliveira Andersson G.ORCID,Silva Antonio A.,Rodrigues Marcelo C.,de Carvalho Laura H.,Lima Antonio G. B.ORCID

Abstract

This work presents an experimental study related to the mechanical performance of a special design spring fabricated with a superelastic shape memory alloy (SMA-SE). For the experimental testing, the spring was coupled in a rotor machine, aiming to attenuate the mechanical vibration when the system went through a natural frequency without any external power source. It was verified that the reduction in instabilities stemmed from the better distribution of vibration force in the proposed device, as well as the damping capacity of the spring material. These findings showed that the application of the M-Shape device of SMA-SE for three different cases could reduce vibration up to 23 dB when compared to the situations without, and with, 1.5 mm of preload. The M-Shape device was shown to be efficient in reducing the mechanical vibration in a rotor system. This was due to the damping capacity of the SMA-SE material, and because the application did not require any external source of energy to generate phase transformation.

Funder

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

1. Engineering Aspects of Shape Memory Alloys;Duerig,1990

2. Vibration Control of a Rotor System Utilizing a Bearing Housing with Controllable Spring Nonlinearity;Liu,1994

3. Shape Memory Materials;Otsuka,1999

4. Shape Memory Alloys;Lagoudas,2008

5. Phase Transformations;Bhadeshia,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3