Abstract
The flexible arm easily vibrates due to its thin structural characteristics, which affect the operation accuracy, so reducing the vibration of the flexible arm is a significant issue. Smart materials are very widely used in the research topic of vibration suppression. Considering the hysteresis characteristic of the smart materials, based on previous simulation research, this paper proposes an experimental system design of nonlinear vibration control by using the interactive actuation from shape memory alloy (SMA) for a flexible arm. The experiment system was an interactive actuator–sensor–controller combination. The vibration suppression strategy was integrated with an operator-based vibration controller, a designed integral compensator and the designed n-times feedback loop. In detail, a nonlinear vibration controller based on operator theory was designed to guarantee the robust stability of the flexible arm. An integral compensator based on an estimation mechanism was designed to optimally reduce the displacement of the flexible arm. Obtaining the desired tracking performance of the flexible arm was a further step, by increasing the n-times feedback loop. From the three experimental cases, when the vibration controller was integrated with the designed integral compensator, the vibration displacement of the flexible arm was much reduced compared to that without the integral compensator. Increasing the number of n-times feedback loops improves the tracking performance. The desired vibration control performance can be satisfied when n tends to infinity. The conventional PD controller stabilizes the vibration displacement after the 7th vibration waveform, while the vibration displacement approaches zero after the 4th vibration waveform using the proposed vibration control method, which is proved to be faster and more effective in controlling the flexible arm’s vibration. The experimental cases verify the effectiveness of the proposed interactive actuation vibration control approach. It is observed from the experimental results that the vibration displacement of the flexible arm becomes almost zero within less time and with lower input power, compared with a traditional controller.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference39 articles.
1. IEEE Robotics and Automation Society Technical Committee on Agricultural Robotics and Automation;Bergerman;IEEE Robot. Autom. Mag.,2013
2. Deng, M., Inoue, A., Shibata, Y., Sekiguchi, K., and Ueki, N. (2007, January 15–17). An obstacle avoidance method for two wheeled mobile robot. Proceedings of the IEEE International Conference on Networking, Sensing and Control, London, UK.
3. An integrated study procedure on real-time estimation of time-varying multi-joint human arm viscoelasticity;Deng;Trans. Inst. Meas. Control,2011
4. Operator-based robust nonlinear control for gantry crane system with soft measurement of swing angle;Wen;Int. J. Model. Identif. Control,2012
5. Operator based experimental studies on nonlinear vibration control for an aircraft vertical tail with considering low order modes;Katsurayama;Trans. Inst. Meas. Control,2016
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献