Transient Dynamics Analysis of a Predator-Prey System with Square Root Functional Responses and Random Perturbation

Author:

Tan JianguoORCID,Wang Wenjuan,Feng JianfengORCID

Abstract

In this paper, we study the asymptotic and transient dynamics of a predator–prey model with square root functional responses and random perturbation. Firstly, the mean square stability matrix is obtained from the stability theory of stochastic systems, and three stability indexes (root-mean-square resilience, root-mean-square reactivity and root-mean-square amplification envelope) of the ecosystem response to stochastic disturbances are calculated. We find that: (1) no matter which population is disturbed, increasing the intensity of disturbance improves the ability of the system leaves steady state and thus decreases the stability. The root-mean-square amplification envelope rises with increasing disturbance intensity, (2) the system is more sensitive to the disturbance of the predator than disturbance to prey, (3) ρmax and tmax are important indicators, which represent the intensity and time of maximum amplification by disturbance. These findings are helpful for managers to take corresponding management measures to reduce the disturbances, especially for predators, thereby avoiding the possible change of the structure and functions of the ecosystem.

Funder

National Key Research and Development Program of China

Tianjin Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3