Mean-Field Analysis with Random Perturbations to Detect Gliders in Cellular Automata

Author:

Seck-Tuoh-Mora Juan Carlos1ORCID,Medina-Marin Joselito1ORCID,Hernández-Romero Norberto1ORCID,Martínez Genaro J.23ORCID

Affiliation:

1. Área Académica de Ingeniería, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Pachuca 42184, Hidalgo, Mexico

2. Artificial Life Robotics Laboratory, Escuela Superior de Computo, Instituto Politecnico Nacional, Mexico City 07738, Mexico

3. Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, UK

Abstract

Cellular automata are mathematical models that represent systems with complex behavior through simple interactions between their individual elements. These models can be used to study unconventional computational systems and complexity. One notable aspect of cellular automata is their ability to create structures known as gliders, which move in a regular pattern to represent the manipulation of information. This paper introduces the modification of mean-field theory applied to cellular automata, using random perturbations based on the system’s evolution rule. The original aspect of this approach is that the perturbation factor is tailored to the nature of the rule, altering the behavior of the mean-field polynomials. By combining the properties of both the original and perturbed polynomials, it is possible to detect when a cellular automaton is more likely to generate gliders without having to run evolutions of the system. This methodology is a useful approach to finding more examples of cellular automata that exhibit complex behavior. We start by examining elementary cellular automata, then move on to examples of automata that can generate gliders with more states. To illustrate the results of this methodology, we provide evolution examples of the detected automata.

Funder

Autonomous University of Hidalgo

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3