Author:
Bera Shyam Pada,Maiti Alakes,Samanta Guruprasad
Abstract
In nature, a number of populations live in groups. As a result when predators attack such a population the interaction occur only at the outer surface of the herd. Again, every model in biology, being concerned with a subsystem of the real world, should include the effect of random fluctuating environment. In this paper, we study a prey–predator model in deterministic and stochastic environment. The social activity of the prey population has been incorporated by using the square root of prey density in the functional response. A brief analysis of the deterministic model including the stability of equilibrium points is presented. In random environment, the birth rate of prey species and death rate of predator species are perturbed by Gaussian white noises. We have used the method of statistical linearization to study the stability and non-equilibrium fluctuation of the populations in stochastic model. Numerical computations carried out to illustrate the analytical findings. The biological implications of analytical and numerical findings are discussed critically.
Subject
Applied Mathematics,Analysis
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献