Photodetection Tuning with High Absorptivity Using Stacked 2D Heterostructure Films

Author:

Farooq UmarORCID,Min-Dianey Kossi A. A.,Rajagopalan Pandey,Malik MuhammadORCID,Kongnine Damgou Mani,Choi Jeong Ryeol,Pham Phuong V.

Abstract

Graphene-based photodetection (PD) devices have been broadly studied for their broadband absorption, high carrier mobility, and mechanical flexibility. Owing to graphene’s low optical absorption, the research on graphene-based PD devices so far has relied on hybrid heterostructure devices to enhance photo-absorption. Designing a new generation of PD devices supported by silicon (Si) film is considered as an innovative technique for PD devices; Si film-based devices are typically utilized in optical communication and image sensing owing to the remarkable features of Si, e.g., high absorption, high carrier mobility, outstanding CMOS integration. Here, we integrate (i) Si film via a splitting/printing transfer with (ii) graphite film grown by a pyrolysis method. Consequently, p-type Si film/graphite film/n-type Si-stacked PD devices exhibited a broadband detection of 0.4–4 μm (in computation) and obtained good experimental results such as the responsivity of 100 mA/W, specific detectivity of 3.44 × 106 Jones, noise-equivalent power of 14.53 × 10−10 W/(Hz)1/2, external quantum efficiency of 0.2, and rise/fall time of 38 μs/1 μs under 532 nm laser illumination. Additionally, our computational results also confirmed an enhanced light absorption of the above stacked 2D heterostructure film-based PD device compatible with the experimental results.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) and the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3