Electric Drive Supervisor for Milling Process 4.0 Automation: A Process Analytical Approach with IIoT NIR Devices for Common Wheat

Author:

Grassi SilviaORCID,Marti AlessandraORCID,Cascella Davide,Casalino Sergio,Cascella Giuseppe Leonardo

Abstract

The milling industry envisions solutions to become fully compatible with the industry 4.0 technology where sensors interconnect devices, machines and processes. In this contest, the work presents an integrated solution merging a deeper understanding and control of the process due to real-time data collection by MicroNIR sensors (VIAVI, Santa Rosa, CA)—directly from the manufacturing process—and data analysis by Chemometrics. To the aim the sensors were positioned at wheat cleaning and at the flour blends phase and near infrared spectra (951–1608 nm) were collected online. Regression models were developed merging the spectra information with the results obtained by reference analyses, i.e., chemical composition and rheological properties of dough by Farinograph® (Brabender GmbH and Co., Duisburg, Germany), Alveograph® (Chopin, NG Villeneuve-la-Garenne Cedex, France) and Extensograph®.(Brabender GmbH and Co., Duisburg, Germany) The model performance was tested by an external dataset obtaining, for most of the parameters, RPRED higher than 0.80 and Root Mean Squares Errors in prediction lower than two-fold the value of the reference method errors. The real-time implementation resulted in optimal (100% of samples) or really good (99.9%–80% of samples) prediction ability. The proposed work succeeded in the implementation of a process analytical approach with Industrial Internet of Things near infrared (IIoT NIR) devices for the prediction of relevant grain and flour characteristics of common wheat at the industrial level.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3