A 0.0014 mm2 150 nW CMOS Temperature Sensor with Nonlinearity Characterization and Calibration for the −60 to +40 °C Measurement Range

Author:

Yang Wendi,Jiang HanjunORCID,Wang Zhihua

Abstract

This work presents a complementary metal–oxide–semiconductor (CMOS) ultra-low power temperature sensor chip for cold chain applications with temperatures down to −60 °C. The sensor chip is composed of a temperature-to-current converter to generate a current proportional to the absolute temperature (PTAT), a current controlled oscillator to convert the current to a frequency signal, and a counter as the frequency-to-digital converter. Unlike the conventional linear error calibration method, the nonlinear error of the PTAT current under the low temperature range is fully characterized based on the device model files provided by the foundry. Simulation has been performed, which clearly shows the nonlinear model is much more accurate than the linear model. A nonlinear error calibration method, which requires only two-point calibration, is then proposed. The temperature sensor chip has been designed and fabricated in a 0.13 μm CMOS process, with a total active die area of 0.0014 mm2. The sensor only draws a 140 nA current from a 1.1 V supply, with the key transistors working in the deep subthreshold region. Measurement results show that the proposed nonlinear calibration can decrease the measurement error from −0.9 to +1.1 °C for the measurement range of −60 to +40 °C, in comparison with the error of −1.8 to +5.3 °C using the conventional linear error calibration.

Funder

National Natural Science Foundation of China

Suzhou-Tsinghua Innovation Leadership Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3