A Three-Dimensional Conceptual Model for Estimating the Above-Ground Biomass of Winter Wheat Using Digital and Multispectral Unmanned Aerial Vehicle Images at Various Growth Stages

Author:

Zhu Yongji1,Liu Jikai1,Tao Xinyu1,Su Xiangxiang1,Li Wenyang2,Zha Hainie34,Wu Wenge15,Li Xinwei167

Affiliation:

1. College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China

2. College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China

3. School of Computer and Information, Anqing Normal University, Anqing 246133, China

4. Anhui Yigang Information Technology Co., Ltd., Anqing 246003, China

5. Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China

6. Agricultural Waste Fertilizer Utilization and Cultivated Land Quality Improvement Engineering Research Center, Chuzhou 233100, China

7. Anhui Engineering Research Center of Smart Crop Planting and Processing Technology, Chuzhou 233100, China

Abstract

The timely and accurate estimation of above-ground biomass (AGB) is crucial for indicating crop growth status, assisting management decisions, and predicting grain yield. Unmanned aerial vehicle (UAV) remote sensing technology is a promising approach for monitoring crop biomass. However, the determination of winter wheat AGB based on canopy reflectance is affected by spectral saturation effects. Thus, constructing a generic model for accurately estimating winter wheat AGB using UAV data is significant. In this study, a three-dimensional conceptual model (3DCM) for estimating winter wheat AGB was constructed using plant height (PH) and fractional vegetation cover (FVC). Compared with both the traditional vegetation index model and the traditional multi-feature combination model, the 3DCM yielded the best accuracy for the jointing stage (based on RGB data: coefficient of determination (R2) = 0.82, normalized root mean square error (nRMSE) = 0.2; based on multispectral (MS) data: R2 = 0.84, nRMSE = 0.16), but the accuracy decreased significantly when the spike organ appeared. Therefore, the spike number (SN) was added to create a new three-dimensional conceptual model (n3DCM). Under different growth stages and UAV platforms, the n3DCM (RGB: R2 = 0.73–0.85, nRMSE = 0.17–0.23; MS: R2 = 0.77–0.84, nRMSE = 0.17–0.23) remarkably outperformed the traditional multi-feature combination model (RGB: R2 = 0.67–0.88, nRMSE = 0.15–0.25; MS: R2 = 0.60–0.77, nRMSE = 0.19–0.26) for the estimation accuracy of the AGB. This study suggests that the n3DCM has great potential in resolving spectral errors and monitoring growth parameters, which could be extended to other crops and regions for AGB estimation and field-based high-throughput phenotyping.

Funder

National Key Research and Development Program of China

National Key Field Innovation Team Program of China

scientific research projects in higher education institutions of Anhui Province

Science and Technology Project Program of Fengyang Country, Anhui Province, China

College Students’ Innovation and Entrepreneurship Training Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3