Author:
Xiong Mengchen,Zhuo Jie,Dong Yangze,Jing Xin
Abstract
Underwater acoustic sensor networks (UASNs) can effectively detect and track targets and therefore play an important role in underwater detection technology. To protect a target from being detected by UASNs, a distributed barrage jamming layout strategy is proposed, which considers the detection performance of UASNs as an indicator of the jamming performance. Since common indices of detection performance often involve specific signal processing methods, the Cramér–Rao bound (CRB) of multiple targets estimated by an UASN for distributed jammers is deduced in this paper, which is universal for all signal processing methods. The optimization model of the distributed jamming layout strategy is designed by maximizing the CRB to achieve the best jamming effect with limited jammers. A heuristic algorithm is used to solve this optimization model, and a numerical simulation shows that the optimal layout strategy for distributed jammers proposed in this paper achieves better performance than traditional jamming layout strategies. Considering the deviation of the position of the jammers from the ideal value due to the movement of water in a real marine environment, this paper also analyzes the jamming effects of strategies when there is error in the position of the jammers. The result proves the effectiveness and superiority of the proposed optimal layout strategy in an actual environment.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献