A Secure Localization Scheme for UASNs Based on Anchor Node Self-Adaptive Adjustment

Author:

Ding Ping1,Zhou Ziyu1ORCID,Ma Jinglan1,Xing Guozhen1ORCID,Jin Zhigang2ORCID,Chen Ye12ORCID

Affiliation:

1. School of Applied Science and Technology, Hainan University, Haikou 570228, China

2. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China

Abstract

The UASNs are widely used in underwater communications and monitoring, and many applications require accurate information regarding the position of nodes. However, intentional attacks against devices or information transmission may exist in the network, and the localization process is periodic, so it is necessary to quickly address attacks and optimize the network structure. This paper proposed an anchor node self-adaptive adjustment localization scheme (ASAL), in which the anchor node can adjust the state and depth of its participation. Two filters were used to adjust the states of referable nodes. The first filter was based on the distance difference of reverse information transmission after direct localization based on anchor nodes. The second was based on the error of the anchor node’s reverse localization after network localization was completed. In addition, a depth-adjustment mechanism of anchor nodes was proposed to optimize the network structure, the virtual force vector was introduced to describe the cost of depth adjustment, and the whale optimization algorithm was used to converge to the depth with the minimum total cost. The simulation results showed that the scheme can ensure localization accuracy and coverage in attack scenarios and reduce localization energy consumption.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hainan Province

key project of Hainan Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Node Adjustment Scheme of Underwater Wireless Sensor Networks Based on Motion Prediction Model;Journal of Marine Science and Engineering;2024-07-25

2. Design and Analysis of Secure Localization Against Vulnerability-Induced Attack for Internet of Things;2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops);2023-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3