Node Adjustment Scheme of Underwater Wireless Sensor Networks Based on Motion Prediction Model

Author:

Zheng Han1ORCID,Chen Haonan1ORCID,Du Anqi1ORCID,Yang Meijiao2ORCID,Jin Zhigang2ORCID,Chen Ye1ORCID

Affiliation:

1. School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China

2. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China

Abstract

With the wide application of Underwater Wireless Sensor Networks (UWSNs) in various fields, more and more attention has been paid to deploying and adjusting network nodes. A UWSN is composed of nodes with limited mobility. Drift movement leads to the network structure’s destruction, communication performance decline, and node life-shortening. Therefore, a Node Adjustment Scheme based on Motion Prediction (NAS-MP) is proposed, which integrates the layered model of the ocean current’s uneven depth, the layered ocean current prediction model based on convolutional neural network (CNN)–transformer, the node trajectory prediction model, and the periodic depth adjustment model based on the Seagull Optimization Algorithm (SOA), to improve the network coverage and connectivity. Firstly, the error threshold of the current velocity and direction in the layer was introduced to divide the depth levels, and the regional current data model was constructed according to the measured data. Secondly, the CNN–transformer hybrid network was used to predict stratified ocean currents. Then, the prediction data of layered ocean currents was applied to the nodes’ drift model, and the nodes’ motion trajectory prediction was obtained. Finally, based on the trajectory prediction of nodes, the SOA obtained the optimal depth of nodes to optimize the coverage and connectivity of the UWSN. Experimental simulation results show that the performance of the proposed scheme is superior.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hainan Province

college students’ innovation and entrepreneurship training project of China

key project of Hainan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3