QoSRP: A Cross-layer QoS Channel-Aware Routing Protocol for the Internet of Underwater Acoustic Sensor Networks

Author:

Faheem ,Butt ,Raza ,Alquhayz ,Ashraf ,Shah ,Ngadi ,Gungor

Abstract

Quality of service (QoS)-aware data gathering in static-channel based underwater wireless sensor networks (UWSNs) is severely limited due to location and time-dependent acoustic channel communication characteristics. This paper proposes a novel cross-layer QoS-aware multichannel routing protocol called QoSRP for the internet of UWSNs-based time-critical marine monitoring applications. The proposed QoSRP scheme considers the unique characteristics of the acoustic communication in highly dynamic network topology during gathering and relaying events data towards the sink. The proposed QoSRP scheme during the time-critical events data-gathering process employs three basic mechanisms, namely underwater channel detection (UWCD), underwater channel assignment (UWCA) and underwater packets forwarding (UWPF). The UWCD mechanism finds the vacant channels with a high probability of detection and low probability of missed detection and false alarms. The UWCA scheme assigns high data rates channels to acoustic sensor nodes (ASNs) with longer idle probability in a robust manner. Lastly, the UWPF mechanism during conveying information avoids congestion, data path loops and balances the data traffic load in UWSNs. The QoSRP scheme is validated through extensive simulations conducted by NS2 and AquaSim 2.0 in underwater environments (UWEs). The simulation results reveal that the QoSRP protocol performs better compared to existing routing schemes in UWSNs.

Funder

Majmaah University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3