Experimental Research on Uniaxial Compression Constitutive Model of Hybrid Fiber-Reinforced Cementitious Composites

Author:

Cui Tao,He Haoxiang,Yan Weiming

Abstract

In order to establish accurate compressive constitutive model of Hybrid Fiber-Reinforced Concrete (HFRC), 10 groups of HFRC specimens containing polyvinyl alcohol (PVA), polypropylene (PP), and steel fibers are designed and compressive testing is conducted. On the basis of summarizing and comparing the existing research, accuracy of various stress-strain constitutive model is compared and the method of calculating fitting parameters is put forward, peak stress, peak strain, and elastic modulus of specimens with different fiber proportion are analyzed, the calculation expressions of each fitting parameter are given. The results show that, under the condition that the volume of the hybrid fiber is 2% with the proportion of the steel fiber increase, the strength of the specimen increases, the peak strain decreases slightly, and the elastic modulus increases significantly. In specimens mixed with PVA-PP hybrid fiber, with the increase of PVA fiber proportion, the peak stress and elastic modulus of the material are improved, and the peak strain are decreased. The existing stress-strain expressions agree well with the tests. Accuracy of exponential model proposed in this paper is the highest, which can be applied in engineering and nonlinear finite element analysis of components.

Funder

Key Technologies Research and Development Program

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3