Effects of Polyoxymethylene Fiber on Fresh and Hardened Properties of Seawater Sea-Sand Concrete

Author:

Xue XuanyiORCID,Wang FeiORCID,Hua Jianmin,Wang NengORCID,Huang Lepeng,Chen Zengshun,Yao Yunhang

Abstract

Seawater and sea sand are used in concrete to reduce the consumption of freshwater and river sand. To improve the mechanical properties and cracking resistance of concrete, polymer fiber is commonly used. In this study, polyoxymethylene (POM) fiber was innovatively applied to seawater sea-sand concrete (SWSSC), and the workability, early-age cracking behavior, and mechanical properties of SWSSC reinforced with POM fiber were investigated experimentally. A total of 6 kinds of SWSSC mixtures and 72 specimens were included. The test results indicated that with increases in fiber volume fractions (ρ), the workability of SWSSC decreased correspondingly. Compared with plain SWSSC, for SWSSC with ρ = 1%, the decreases in slump and expansibility were 110.6 and 91.9 mm, respectively. POM fiber had a significant enhancing effect on the early-age cracking resistance of SWSSC. Compared with those of plain SWSSC, the cracking indices ac, bc, and cc of the POM-1 specimen decreased by 77.0%, 89.4%, and 97.6%, respectively. Cube and axial compressive tests, splitting tensile tests, and flexural tests were conducted to clarify the effects of POM fiber on the mechanical properties of SWSSC. Compared with plain SWSSC, SWSSC with POM fiber performed better in terms of mechanical properties. Predictive equations were proposed to quantify the effects of POM fiber on the mechanical properties of SWSSC. The failure performances of the SWSSC specimens were discussed and their complete stress–strain curve was analyzed. A stress–strain model for SWSSC was suggested. According to the model, the complete stress–strain curve of SWSSC with any POM fiber content could be determined.

Funder

THE NATIONAL NATURAL SCIENCE FOUNDATION OF CHINA

THE SPECIAL FUNDING FOR RESEARCH PROJECTS OF POSTDOCTORAL RESEARCHERS IN CHONGQING

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference64 articles.

1. Experimental and numerical investigation on the L-joint composed of steel-plate composite (SC) walls under seismic loading;Eng. Struct.,2020

2. Behavior of L-joint composed of steel-plate composite wall and reinforced concrete wall;J. Constr. Steel Res.,2020

3. Use of sea-sand and seawater in concrete construction: Current status and future opportunities;Constr. Build. Mater.,2017

4. Fresh and hardened properties of seawater-mixed concrete;Constr. Build. Mater.,2018

5. Material Alternatives for Concrete Structures on Remote Islands: Based on Life-cycle cost Analysis;Adv. Civ. Eng.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3