Reclaimed Water for Vineyard Irrigation in a Mediterranean Context: Life Cycle Environmental Impacts, Life Cycle Costs, and Eco-Efficiency

Author:

Canaj KledjaORCID,Morrone DomenicoORCID,Roma RoccoORCID,Boari Francesca,Cantore VitoORCID,Todorovic MladenORCID

Abstract

The agricultural sector in the Mediterranean region, is increasingly using reclaimed water as an additional source for irrigation. However, there is a limited number of case studies about product-based life cycle analysis to ensure that the overall benefits of reclaimed water do indeed outweigh the impacts. The Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) methods are used in this study to investigate the environmental impacts and costs of vineyard cropping systems when tertiary reclaimed water is used as a supplementary source of irrigation water (integrated system). The conventional production system utilizing 100% groundwater was used as a reference system. As a proxy for sustainability, eco-efficiency, which combines economic and environmental performance, was assessed. The LCA revealed that the integrated system could reduce the net environmental impact by 23.8% due to lower consumption of irrigation water (−50%), electricity (−27.7%), and chemical fertilizers (−22.6%). Nevertheless, trade-offs between economics and the environment occurred as an integrated system is associated with higher life cycle costs and lower economic returns due to lower crop yield (−9.1%). The combined eco-efficiency assessment (ratio of economic value added to total environmental impact) revealed that the integrated system outperformed in terms of eco-efficiency by 12.6% due to lower environmental impacts. These results confirmed that reclaimed water could help to ensure an economically profitable yield with net environmental benefits. Our results provided an up-to-date and consistent life cycle analysis contributing to the creation of a valuable knowledge base for the associated costs and benefits of vineyard cultivation with treated wastewater.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3