Assessing the environmental impacts of reclaimed and conventional water in hydroponics based on a life cycle assessment approach

Author:

Nadeem Abdullah1ORCID,Tariq Muhammad Atiq Ur Rehman123ORCID,Sarwar Kaleem1,Iqbal Mudassar1,Ahmad Khalil1ORCID,Ahmed Khalil1

Affiliation:

1. a Centre of Excellence in Water Resources Engineering, University of Engineering and Technology, Lahore 54890, Pakistan

2. b College of Engineering and Science, Victoria University, Melbourne, VIC 8001, Australia

3. c College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0810, Australia

Abstract

ABSTRACT As the global population approaches 9 billion by 2050, challenges of food and water scarcity intensify. Hydroponics, an innovative and eco-friendly technology, has gained prominence in addressing these challenges. This study employs Life Cycle Assessment (LCA) to comprehensively evaluate the environmental and economic impacts of utilizing reclaimed water in a hydroponic system. Results from midpoint, endpoint, and normalized analyses reveal key contributors to the hydroponic system's environmental burden, including water, substrates, fertilizers, and energy sources. Significant impacts have been observed in marine and terrestrial ecotoxicity, as well as photochemical ozone formation. Reclaimed water consistently demonstrates lower environmental impacts compared to conventional water across various indicators, such as climate change (131 kg CO2 eq.), fine particulate matter formation (0.108 kg PM2.5 eq.), and freshwater consumption (0.291 cubic meters). The study emphasizes the potential of hydroponics with reclaimed water to offer sustainable and environmentally friendly agricultural practices. The detailed LCA results provide valuable insights for policymakers and stakeholders, promoting the adoption of hydroponics to address food and water scarcity challenges. From the findings, reclaimed water in hydroponics lowers the environmental impacts as compared to conventional water and PVC (Polyvinyl chloride) along with electricity is the major contributor in environmental burden.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3