A Comparative Life Cycle Assessment of Crop Systems Irrigated with the Groundwater and Reclaimed Water in Northern China

Author:

Romeiko Xiaobo Xue

Abstract

Using reclaimed water from treated wastewater as an irrigation source is gaining popularity in arid and semi-arid areas. However, life cycle assessment studies, utilizing experimental data to analyze the environmental and health impacts of crops irrigated with reclaimed water, are lacking. This study presents the first comparative life cycle assessment of corn, soybean and wheat systems irrigated with groundwater and reclaimed water in Northern China. While the life cycle foreground inventory was based on a combination of experimental and modeling datasets, the life cycle background inventory was compiled with commercially available data packages augmented with Chinese electricity mix data. The life cycle impact analyses were based on the characterization factors from state-of-art life cycle impact assessment models. The analyses indicated that the life cycle global warming impacts of the crop systems ranged from 0.37 to 0.64 kg CO2-eq/kg grain, with reclaimed water irrigated soybean and ground water irrigated wheat exhibiting, respectively, the lowest and highest global warming impacts. Irrigation, farming equipment operation, on-field emissions and fertilizer production ranked as top contributors to the life cycle impacts for corn, soybean, and wheat. The comparative analyses of irrigation sources suggested that significant environmental tradeoffs existed. Replacing groundwater with reclaimed water as the irrigation source significantly decreased life cycle global warming, acidification, ozone depletion, smog formation, and respiratory impacts of corn, soybean and wheat systems. However, replacing groundwater with reclaimed water increased the life cycle noncancer impacts of those systems. Coordinating policies within the water–food–health nexus is required, in order to minimize the environmental tradeoffs, while maximizing the benefits of irrigation with reclaimed water.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3