Trajectory Planning of Robot Manipulator Based on RBF Neural Network

Author:

Song QisongORCID,Li ShaoboORCID,Bai Qiang,Yang JingORCID,Zhang Ansi,Zhang XingxingORCID,Zhe Longxuan

Abstract

Robot manipulator trajectory planning is one of the core robot technologies, and the design of controllers can improve the trajectory accuracy of manipulators. However, most of the controllers designed at this stage have not been able to effectively solve the nonlinearity and uncertainty problems of the high degree of freedom manipulators. In order to overcome these problems and improve the trajectory performance of the high degree of freedom manipulators, a manipulator trajectory planning method based on a radial basis function (RBF) neural network is proposed in this work. Firstly, a 6-DOF robot experimental platform was designed and built. Secondly, the overall manipulator trajectory planning framework was designed, which included manipulator kinematics and dynamics and a quintic polynomial interpolation algorithm. Then, an adaptive robust controller based on an RBF neural network was designed to deal with the nonlinearity and uncertainty problems, and Lyapunov theory was used to ensure the stability of the manipulator control system and the convergence of the tracking error. Finally, to test the method, a simulation and experiment were carried out. The simulation results showed that the proposed method improved the response and tracking performance to a certain extent, reduced the adjustment time and chattering, and ensured the smooth operation of the manipulator in the course of trajectory planning. The experimental results verified the effectiveness and feasibility of the method proposed in this paper.

Funder

Guizhou University

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3