Collision-Free Trajectory Planning Optimization Algorithms for Two-Arm Cascade Combination System

Author:

Xu Jingjing1ORCID,Tao Long1,Pei Yanhu2,Cheng Qiang1ORCID,Chu Hongyan1,Zhang Tao1

Affiliation:

1. Institute of Advanced Manufacturing and Intelligent Technology, Beijing University of Technology, Beijing 100124, China

2. Genertec Machine Tool Engineering Research Institute Co., Ltd., Beijing 100102, China

Abstract

As a kind of space robot, the two-arm cascade combination system (TACCS) has been applied to perform auxiliary operations at different locations outside space cabins. The motion coupling relation of two arms and complex surrounding obstacles make the collision-free trajectory planning optimization of TACCS more difficult, which has become an urgent problem to be solved. For the above problem, this paper proposed collision-free and time–energy–minimum trajectory planning optimization algorithms, considering the motion coupling of two arms. In this method, the screw-based inverse kinematics (IK) model of TACCS is established to provide the basis for the motion planning in joint space by decoupling the whole IK problem into two IK sub-problems of two arms; the minimum distance calculation model is established based on the hybrid geometric enveloping way and basic distance functions, which can provide the efficient and accurate data basis for the obstacle-avoidance constraint condition of the trajectory optimization. Moreover, the single and bi-layer optimization algorithms are presented by taking motion time and energy consumption as objectives and considering obstacle-avoidance and kinematics constraints. Finally, through example cases, the results indicate that the bi-layer optimization has higher convergence efficiency under the premise of ensuring the optimization effect by separating variables and constraint terms. This work can provide theoretical and methodological support for the efficient and intelligent applications of TACCS in the space arena.

Funder

National Key R&D Program of China

Joint Funds of the National Natural Science Foundation of China

2022 industrial technology basic public service platform

R&D Program of the Beijing Municipal Education Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3