Ship Type Classification by Convolutional Neural Networks with Auditory-Like Mechanisms

Author:

Shen Sheng,Yang HonghuiORCID,Yao Xiaohui,Li Junhao,Xu Guanghui,Sheng Meiping

Abstract

Ship type classification with radiated noise helps monitor the noise of shipping around the hydrophone deployment site. This paper introduces a convolutional neural network with several auditory-like mechanisms for ship type classification. The proposed model mainly includes a cochlea model and an auditory center model. In cochlea model, acoustic signal decomposition at basement membrane is implemented by time convolutional layer with auditory filters and dilated convolutions. The transformation of neural patterns at hair cells is modeled by a time frequency conversion layer to extract auditory features. In the auditory center model, auditory features are first selectively emphasized in a supervised manner. Then, spectro-temporal patterns are extracted by deep architecture with multistage auditory mechanisms. The whole model is optimized with an objective function of ship type classification to form the plasticity of the auditory system. The contributions compared with an auditory inspired convolutional neural network include the improvements in dilated convolutions, deep architecture and target layer. The proposed model can extract auditory features from a raw hydrophone signal and identify types of ships under different working conditions. The model achieved a classification accuracy of 87.2% on four ship types and ocean background noise.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3