A Novel & Efficient LR LSTM AIS Route Data Prediction for Longer Range

Author:

Raj NitishORCID,Kumar PrabhatORCID

Abstract

The growth of technology has enabled different industries to generate an excessive amount of data- one such industry being the maritime sector. Sophisticated sensory systems installed on various vessels generate information at a very large scale which can further be used in optimizing operational efficiency, improving safety standards, and aiding in the decision-making process. Researchers have henceforth identified statistical learning methods and machine learning techniques as potent tools for excavating useful insights from this copious amount of data available. This research evaluates how these algorithms work by focusing exclusively on the analysis of sensory data collected from vessels within the maritime domain. A comparison study has been conducted between statistical learning methods (which includes regression analysis, and time series analysis) vis-a-vis machine learning approaches. The major objective of this study was to determine the most effective method for detecting anomalies while simplifying marine operations and optimizing vessel behavior. The scope of the conducted analysis is restricted to the prediction of the next trajectory points. Accurate prediction of vessel positions plays a crucial role in maritime operations, enabling efficient route planning, collision avoidance, and maritime traffic management. In this article, the authors propose a combination model that combines the benefits of Linear Regression (LR) and Long Short-Term Memory (LSTM) techniques to anticipate vessel positions based on Automatic Identification System (AIS) data. The proposed model takes advantage of the interpretability of LR and the temporal dependencies collected by LSTM to capture temporal dependencies, which improve prediction accuracy and reveal the underlying links between vessel features and future positions.

Publisher

Defence Scientific Information and Documentation Centre

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3