A Big Coal Block Alarm Detection Method for Scraper Conveyor Based on YOLO-BS

Author:

Wang Yuan,Guo Wei,Zhao ShuanfengORCID,Xue BuqingORCID,Zhang Wugang,Xing ZhizhongORCID

Abstract

With the aim of solving the problem of coal congestion caused by big coal blocks in underground mine scraper conveyors, in this paper we proposed the use of a YOLO-BS (YOLO-Big Size) algorithm to detect the abnormal phenomenon of coal blocks on scraper conveyors. Given the scale of the big coal block targets, the YOLO-BS algorithm replaces the last layer of the YOLOv4 algorithm feature extraction backbone network with the transform module. The YOLO-BS algorithm also deletes the redundant branch which detects small targets in the PAnet module, which reduces the overall number of parameters in the YOLO-BS algorithm. As the up-sampling and down-sampling operations in the PAnet module of the YOLO algorithm can easily cause feature loss, YOLO-BS improves the problem of feature loss and enhances the convergence performance of the model by adding the SimAM space and channel attention mechanism. In addition, to solve the problem of sample imbalance in big coal block data, in this paper, it was shown that the YOLO-BS algorithm selects focal loss as the loss function. In view of the problem that the same lump coal in different locations on the scraper conveyor led to different congestion rates, we conducted research and proposed a formula to calculate the congestion rate. Finally, we collected 12,000 image datasets of coal blocks on the underground scraper conveyor in Daliuta Coal Mine, China, and verified the performance of the method proposed in this paper. The results show that the processing speed of the proposed method can reach 80 fps, and the correct alarm rate can reach 93%. This method meets the real-time and accuracy requirements for the detection of abnormal phenomena in scraper conveyors.

Funder

the Natural Science Basic Research Project of Shaanxi Province

the General Special Scientific Research Plan of the Shaanxi Provincial Department of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3