Multi-Scene Mask Detection Based on Multi-Scale Residual and Complementary Attention Mechanism

Author:

Zhou Yuting1,Lin Xin1ORCID,Luo Shi1,Ding Sixian1,Xiao Luyang1,Ren Chao1ORCID

Affiliation:

1. College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China

Abstract

Vast amounts of monitoring data can be obtained through various optical sensors, and mask detection based on deep learning integrates neural science into a variety of applications in everyday life. However, mask detection poses technical challenges such as small targets, complex scenes, and occlusions, which necessitate high accuracy and robustness in multi-scene target detection networks. Considering that multi-scale features can increase the receptive field and attention mechanism can improve the detection effect of small targets, we propose the YOLO-MSM network based on the multi-scale residual (MSR) block, multi-scale residual cascaded channel-spatial attention (MSR-CCSA) block, enhanced residual CCSA (ER-CCSA) block, and enhanced residual PCSA (ER-PCSA) block. Considering the performance and parameters, we use YOLOv5 as the baseline network. Firstly, for the MSR block, we construct hierarchical residual connections in the residual blocks to extract multi-scale features and obtain finer features. Secondly, to realize the joint attention function of channel and space, both the CCSA block and PCSA block are adopted. In addition, we construct a new dataset named Multi-Scene-Mask, which contains various scenes, crowd densities, and mask types. Experiments on the dataset show that YOLO-MSM achieves an average precision of 97.51%, showing better performance than other detection networks. Compared with the baseline network, the mAP value of YOLO-MSM is increased by 3.46%. Moreover, we propose a module generalization improvement strategy (GIS) by training YOLO-MSM on the dataset augmented with white Gaussian addition noise to improve the generalization ability of the network. The test results verify that GIS can greatly improve the generalization of the network and YOLO-MSM has stronger generalization ability than the baseline.

Funder

National Natural Science Foundation of China

University-City Collaboration Special Fund Project of Sichuan University-Dazhou City

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3