Combinations of Spent Grains as Sources of Valuable Compounds with Highly Valuable Functional and Microbial Properties

Author:

Kumar Mukul1ORCID,Anisha Anisha1,Kaushik Deepika2,Kaur Jasjit1ORCID,Shubham Shubham3,Rusu Alexandru Vasile4ORCID,Rocha João Miguel567ORCID,Trif Monica8ORCID

Affiliation:

1. Department of Food Technology and Nutrition, Lovely Professional University, Phagwar 144411, India

2. Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India

3. Department of Innovation Engineering University of Salento, 72100 Brindisi, Italy

4. CENCIRA Agrofood Research and Innovation Centre, 400650 Cluj-Napoca, Romania

5. Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal

6. LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

7. ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

8. Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28857 Syke, Germany

Abstract

The potential of spent grains as a source of valuable compounds with various properties has gained attention. They are the by-product of the brewing process, typically resulting from the beer-making process. Five different mixed combinations of spent grains of barley, wheat, rice, maize and finger-millet were formulated and further analyzed and compared. Barley and wheat (BW), barley and rice (BR), barley and maize (BM), and barley and finger-millets (BF) were mixed in a ratio of 1:1 (w/w) and ground into a fine powder to study their techno-functional, phytochemical and in vitro properties. The techno-functional, phytochemical and in vitro properties of barley and maize (BM) were found to be the best choice, making it a promising candidate for applications in value-added products. The WAI (water absorption index) of BM (5.03 g/g) was the highest compared to BB (3.20 g/g), BF (3.56 g/g), BR (4.10 g/g) and BW (4.33 g/g), whereas the WSI (water solubility index) and OAC (oil absorption capacity) of BM (7.06% and 1.90 g/g, respectively) were lower than BW (7.60% and 2.24 g/g, respectively), BR (8.20% and 2.30 g/g, respectively), BF (9.67% and 2.57 g/g, respectively) and BB (10.47% and 2.70 g/g, respectively). A higher percentage of inhibition of DPPH (44.14%) and high phenolic and flavonoid contents (72.39 mg GAE/gm and 66.03 mg QE/gm, respectively) were observed in BM. It also showed higher in vitro properties like amylase and lipase inhibition assay (89.05% and 62.34%, respectively) than the other combinations. The present study provides valuable information about the differences between spent grain varieties and their combinations, with potential applications in various industries.

Funder

national funds

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3